mvpa2.clfs.gprΒΆ
Gaussian Process Regression (GPR).
Functions
NLAcholesky (a) |
Cholesky decomposition. |
NLAsolve (a, b) |
Solve a linear matrix equation, or system of linear scalar equations. |
Ndiag (v[, k]) |
Extract a diagonal or construct a diagonal array. |
Ndot (a, b[, out]) |
Dot product of two arrays. |
SLcho_solve (c_and_lower, b[, overwrite_b, ...]) |
Solve the linear equations A x = b, given the Cholesky factorization of A. |
SLcholesky (a[, lower, overwrite_a, check_finite]) |
Compute the Cholesky decomposition of a matrix. |
accepts_dataset_as_samples (fx) |
Decorator to extract samples from Datasets. |
array (object[, dtype, copy, order, subok, ndmin]) |
Create an array. |
asarray (a[, dtype, order]) |
Convert the input to an array. |
Classes
Classifier ([space]) |
Abstract classifier class to be inherited by all classifiers |
ConditionalAttribute ([enabled]) |
Simple container intended to conditionally store the value |
Dataset (samples[, sa, fa, a]) |
Generic storage class for datasets with multiple attributes. |
EnsureFloat () |
Ensure that an input (or several inputs) are of a data type ‘float’. |
EnsureNone |
Ensure an input is of value None |
EnsureRange ([min, max]) |
Ensure an input is within a particular range |
GPR ([kernel]) |
Gaussian Process Regression (GPR). |
GPRLinearWeights (clf[, force_train]) |
SensitivityAnalyzer that reports the weights GPR trained |
GeneralizedLinearKernel (\*args, \*\*kwargs) |
The linear kernel class. |
LinearKernel (\*args, \*\*kwargs) |
Simple linear kernel: K(a,b) = a*b.T |
Parameter (default[, constraints, ro, index, ...]) |
This class shall serve as a representation of a parameter. |
Sensitivity (clf[, force_train]) |
Sensitivities of features for a given Classifier. |
SquaredExponentialKernel ([length_scale, sigma_f]) |
The Squared Exponential kernel class. |
Exceptions
Classifier ([space]) |
Abstract classifier class to be inherited by all classifiers |
ConditionalAttribute ([enabled]) |
Simple container intended to conditionally store the value |
Dataset (samples[, sa, fa, a]) |
Generic storage class for datasets with multiple attributes. |
EnsureFloat () |
Ensure that an input (or several inputs) are of a data type ‘float’. |
EnsureNone |
Ensure an input is of value None |
EnsureRange ([min, max]) |
Ensure an input is within a particular range |
GPR ([kernel]) |
Gaussian Process Regression (GPR). |
GPRLinearWeights (clf[, force_train]) |
SensitivityAnalyzer that reports the weights GPR trained |
GeneralizedLinearKernel (\*args, \*\*kwargs) |
The linear kernel class. |
LinearKernel (\*args, \*\*kwargs) |
Simple linear kernel: K(a,b) = a*b.T |
Parameter (default[, constraints, ro, index, ...]) |
This class shall serve as a representation of a parameter. |
Sensitivity (clf[, force_train]) |
Sensitivities of features for a given Classifier. |
SquaredExponentialKernel ([length_scale, sigma_f]) |
The Squared Exponential kernel class. |