mvpa2.clfs.gpr.SquaredExponentialKernel¶
-
class
mvpa2.clfs.gpr.
SquaredExponentialKernel
(length_scale=1.0, sigma_f=1.0, **kwargs)¶ The Squared Exponential kernel class.
Note that it can handle a length scale for each dimension for Automtic Relevance Determination.
Attributes
descr
Description of the object if any length_scale
Methods
add_conversion
(typename, methodfull, methodraw)Adds methods to the Kernel class for new conversions as_ls
(kernel)as_np
()Converts this kernel to a Numpy-based representation as_raw_ls
(kernel)as_raw_np
()Directly return this kernel as a numpy array. as_raw_sg
(kernel)Converts directly to a Shogun kernel as_sg
(kernel)Converts this kernel to a Shogun-based representation cleanup
()Wipe out internal representation compute
(ds1[, ds2])Generic computation of any kernel compute_lml_gradient
(alphaalphaT_Kinv, data)Compute grandient of the kernel and return the portion of log marginal likelihood gradient due to the kernel. compute_lml_gradient_logscale
(...)Compute grandient of the kernel and return the portion of log marginal likelihood gradient due to the kernel. computed
(\*args, \*\*kwargs)Compute kernel and return self reset
()set_hyperparameters
(hyperparameter)Set hyperaparmeters from a vector. Initialize a Squared Exponential kernel instance.
Parameters: length_scale : float or numpy.ndarray, optional
the characteristic length-scale (or length-scales) of the phenomenon under investigation. (Defaults to 1.0)
sigma_f : float, optional
Signal standard deviation. (Defaults to 1.0)
enable_ca : None or list of str
Names of the conditional attributes which should be enabled in addition to the default ones
disable_ca : None or list of str
Names of the conditional attributes which should be disabled
Attributes
descr
Description of the object if any length_scale
Methods
add_conversion
(typename, methodfull, methodraw)Adds methods to the Kernel class for new conversions as_ls
(kernel)as_np
()Converts this kernel to a Numpy-based representation as_raw_ls
(kernel)as_raw_np
()Directly return this kernel as a numpy array. as_raw_sg
(kernel)Converts directly to a Shogun kernel as_sg
(kernel)Converts this kernel to a Shogun-based representation cleanup
()Wipe out internal representation compute
(ds1[, ds2])Generic computation of any kernel compute_lml_gradient
(alphaalphaT_Kinv, data)Compute grandient of the kernel and return the portion of log marginal likelihood gradient due to the kernel. compute_lml_gradient_logscale
(...)Compute grandient of the kernel and return the portion of log marginal likelihood gradient due to the kernel. computed
(\*args, \*\*kwargs)Compute kernel and return self reset
()set_hyperparameters
(hyperparameter)Set hyperaparmeters from a vector. -
compute_lml_gradient
(alphaalphaT_Kinv, data)¶ Compute grandient of the kernel and return the portion of log marginal likelihood gradient due to the kernel. Shorter formula. Allows vector of lengthscales (ARD).
-
compute_lml_gradient_logscale
(alphaalphaT_Kinv, data)¶ Compute grandient of the kernel and return the portion of log marginal likelihood gradient due to the kernel. Hyperparameters are in log scale which is sometimes more stable. Shorter formula. Allows vector of lengthscales (ARD).
-
length_scale
¶
-
reset
()¶
-
set_hyperparameters
(hyperparameter)¶ Set hyperaparmeters from a vector.
Used by model selection.
-