mvpa2.measures.rsa.CDist¶
-
class
mvpa2.measures.rsa.
CDist
(**kwargs)¶ Compute cross-validated dissimiliarity matrix for samples in a dataset
This
Measure
can be trained on part of the dataset (for example, a partition) and called on another partition. It can be used in cross-validation to generate cross-validated RSA. Returns flattened dissimilarity values.Notes
Available conditional attributes:
calling_time+
: Time (in seconds) it took to call the nodenull_prob+
: Nonenull_t
: Noneraw_results
: Computed results before invoking postproc. Stored only if postproc is not None.trained_dataset
: The dataset it has been trained ontrained_nsamples+
: Number of samples it has been trained ontrained_targets+
: Set of unique targets (or any other space) it has been trained on (if present in the dataset trained on)training_time+
: Time (in seconds) it took to train the learner
(Conditional attributes enabled by default suffixed with
+
)Attributes
auto_train
Whether the Learner performs automatic trainingwhen called untrained. descr
Description of the object if any force_train
Whether the Learner enforces training upon every call. is_trained
Whether the Learner is currently trained. null_dist
Return Null Distribution estimator pass_attr
Which attributes of the dataset or self.ca to pass into result dataset upon call postproc
Node to perform post-processing of results space
Processing space name of this node Methods
__call__
(ds)generate
(ds)Yield processing results. get_postproc
()Returns the post-processing node or None. get_space
()Query the processing space name of this node. reset
()set_postproc
(node)Assigns a post-processing node set_space
(name)Set the processing space name of this node. train
(ds)The default implementation calls _pretrain()
,_train()
, and finally_posttrain()
.untrain
()Reverts changes in the state of this node caused by previous training Initialize instance of CDist
Parameters: pairwise_metric : str, optional
Distance metric to use for calculating pairwise vector distances for dissimilarity matrix (DSM). See scipy.spatial.distance.cdist for all possible metrics. Constraints: value must be a string. [Default: ‘correlation’]
pairwise_metric_kwargs
kwargs dictionary passed to cdist. For example, if
pairwise_metric='mahalanobis'
,pairwise_metric_kwargs
might contain the inverse of the covariance matrix. [Default: {}]sattr
List of sample attributes whose unique values will be used to identify the samples groups. Typically your category labels or targets. [Default: [‘targets’]]
enable_ca : None or list of str
Names of the conditional attributes which should be enabled in addition to the default ones
disable_ca : None or list of str
Names of the conditional attributes which should be disabled
null_dist : instance of distribution estimator
The estimated distribution is used to assign a probability for a certain value of the computed measure.
auto_train : bool
Flag whether the learner will automatically train itself on the input dataset when called untrained.
force_train : bool
Flag whether the learner will enforce training on the input dataset upon every call.
space : str, optional
Name of the ‘processing space’. The actual meaning of this argument heavily depends on the sub-class implementation. In general, this is a trigger that tells the node to compute and store information about the input data that is “interesting” in the context of the corresponding processing in the output dataset.
pass_attr : str, list of str|tuple, optional
Additional attributes to pass on to an output dataset. Attributes can be taken from all three attribute collections of an input dataset (sa, fa, a – see
Dataset.get_attr()
), or from the collection of conditional attributes (ca) of a node instance. Corresponding collection name prefixes should be used to identify attributes, e.g. ‘ca.null_prob’ for the conditional attribute ‘null_prob’, or ‘fa.stats’ for the feature attribute stats. In addition to a plain attribute identifier it is possible to use a tuple to trigger more complex operations. The first tuple element is the attribute identifier, as described before. The second element is the name of the target attribute collection (sa, fa, or a). The third element is the axis number of a multidimensional array that shall be swapped with the current first axis. The fourth element is a new name that shall be used for an attribute in the output dataset. Example: (‘ca.null_prob’, ‘fa’, 1, ‘pvalues’) will take the conditional attribute ‘null_prob’ and store it as a feature attribute ‘pvalues’, while swapping the first and second axes. Simplified instructions can be given by leaving out consecutive tuple elements starting from the end.postproc : Node instance, optional
Node to perform post-processing of results. This node is applied in
__call__()
to perform a final processing step on the to be result dataset. If None, nothing is done.descr : str
Description of the instance
Attributes
auto_train
Whether the Learner performs automatic trainingwhen called untrained. descr
Description of the object if any force_train
Whether the Learner enforces training upon every call. is_trained
Whether the Learner is currently trained. null_dist
Return Null Distribution estimator pass_attr
Which attributes of the dataset or self.ca to pass into result dataset upon call postproc
Node to perform post-processing of results space
Processing space name of this node Methods
__call__
(ds)generate
(ds)Yield processing results. get_postproc
()Returns the post-processing node or None. get_space
()Query the processing space name of this node. reset
()set_postproc
(node)Assigns a post-processing node set_space
(name)Set the processing space name of this node. train
(ds)The default implementation calls _pretrain()
,_train()
, and finally_posttrain()
.untrain
()Reverts changes in the state of this node caused by previous training