mvpa2.measures.ireliefΒΆ

Multivariate Iterative RELIEF

See : Y. Sun, Iterative RELIEF for Feature Weighting: Algorithms, Theories, and Applications, IEEE Trans. on Pattern Analysis and Machine Intelligence (TPAMI), vol. 29, no. 6, pp. 1035-1051, June 2007.

Inheritance diagram of mvpa2.measures.irelief

Functions

pnorm_w(data1[, data2, weight, p]) Weighted p-norm between two datasets (scipy.weave implementation)

Classes

Dataset(samples[, sa, fa, a]) Generic storage class for datasets with multiple attributes.
ExponentialKernel(\*args, \*\*kwargs) The Exponential kernel class.
FeaturewiseMeasure([null_dist]) A per-feature-measure computed from a Dataset (base class).
IterativeRelief([threshold, kernel_width, ...]) FeaturewiseMeasure that performs multivariate I-RELIEF
IterativeReliefOnline([a, permute, max_iter]) FeaturewiseMeasure that performs multivariate I-RELIEF
IterativeReliefOnline_Devel([a, permute, ...]) FeaturewiseMeasure that performs multivariate I-RELIEF
IterativeRelief_Devel([threshold, kernel, ...]) FeaturewiseMeasure that performs multivariate I-RELIEF