mvpa2.mappers.fxΒΆ

Transform data by applying a function along samples or feature axis.

Inheritance diagram of mvpa2.mappers.fx

Functions

absolute_features() Returns a mapper that converts features into absolute values.
argsort(seq[, reverse]) Return indices to get sequence sorted
array_whereequal(a, x) Reliable comparison for numpy.ndarray
borrowdoc(cls[, methodname]) Return a decorator to borrow docstring from another cls.`methodname`
expand_contraint_spec(spec) Helper to translate literal contraint specs into functional ones
max_of_abs(x) Max of absolute values along the 2nd axis
maxofabs_sample() Returns a mapper that finds max of absolute values of all samples.
mean_feature([attrfx]) Returns a mapper that computes the mean feature of a dataset.
mean_group_feature(attrs[, attrfx]) Returns a mapper that computes the mean features of unique feature groups.
mean_group_sample(attrs[, attrfx]) Returns a mapper that computes the mean samples of unique sample groups.
mean_sample([attrfx]) Returns a mapper that computes the mean sample of a dataset.
merge2first(attrs) Compress a sequence by discard all but the first element
subtract_mean(x) Subtract mean across first axis
subtract_mean_feature([attrfx]) Subtract mean of features across samples.
sum_of_abs(x) Sum of absolute values along the 2nd axis
sum_sample([attrfx]) Returns a mapper that computes the sum sample of a dataset.
sumofabs_sample() Returns a mapper that returns the sum of absolute values of all samples.

Classes

AltConstraints(\*constraints) Logical OR for constraints.
BinaryFxNode(fx, space, \*\*kwargs) Extract a dataset attribute and call a function with it and the samples.
BinomialProportionCI(\*\*kwargs) Compute binomial proportion confidence intervals
Constraint Base class for input value conversion/validation.
Constraints(\*constraints) Logical AND for constraints.
Dataset(samples[, sa, fa, a]) Generic storage class for datasets with multiple attributes.
EnsureBool Ensure that an input is a bool.
EnsureChoice(\*values) Ensure an input is element of a set of possible values
EnsureDType(dtype) Ensure that an input (or several inputs) are of a particular data type.
EnsureFloat() Ensure that an input (or several inputs) are of a data type ‘float’.
EnsureInt() Ensure that an input (or several inputs) are of a data type ‘int’.
EnsureListOf(dtype) Ensure that an input is a list of a particular data type
EnsureNone Ensure an input is of value None
EnsureRange([min, max]) Ensure an input is within a particular range
EnsureStr Ensure an input is a string.
EnsureTupleOf(dtype) Ensure that an input is a tuple of a particular data type
FxMapper(axis, fx[, fxargs, uattrs, attrfx, ...]) Apply a custom transformation to (groups of) samples or features.
Mapper(\*\*kwargs) Basic mapper interface definition.
MeanRemoval([in_place]) Subtract sample mean from features.
Node([space, pass_attr, postproc]) Common processing object.
Parameter(default[, constraints, ro, index, ...]) This class shall serve as a representation of a parameter.