mvpa2.kernels.np.RationalQuadraticKernel¶
-
class
mvpa2.kernels.np.
RationalQuadraticKernel
(length_scale=1.0, sigma_f=1.0, alpha=0.5, **kwargs)¶ The Rational Quadratic (RQ) kernel class.
Note that it can handle a length scale for each dimension for Automtic Relevance Determination.
Attributes
descr
Description of the object if any Methods
add_conversion
(typename, methodfull, methodraw)Adds methods to the Kernel class for new conversions as_ls
(kernel)as_np
()Converts this kernel to a Numpy-based representation as_raw_ls
(kernel)as_raw_np
()Directly return this kernel as a numpy array. as_raw_sg
(kernel)Converts directly to a Shogun kernel as_sg
(kernel)Converts this kernel to a Shogun-based representation cleanup
()Wipe out internal representation compute
(ds1[, ds2])Generic computation of any kernel computed
(\*args, \*\*kwargs)Compute kernel and return self gradient
(data1, data2)Compute gradient of the kernel matrix. reset
()set_hyperparameters
(hyperparameter)Set hyperaparmeters from a vector. Initialize a Squared Exponential kernel instance.
Parameters: length_scale : float or numpy.ndarray
the characteristic length-scale (or length-scales) of the phenomenon under investigation. (Defaults to 1.0)
sigma_f : float
Signal standard deviation. (Defaults to 1.0)
alpha : float
The parameter of the RQ functions family. (Defaults to 2.0)
enable_ca : None or list of str
Names of the conditional attributes which should be enabled in addition to the default ones
disable_ca : None or list of str
Names of the conditional attributes which should be disabled
Attributes
descr
Description of the object if any Methods
add_conversion
(typename, methodfull, methodraw)Adds methods to the Kernel class for new conversions as_ls
(kernel)as_np
()Converts this kernel to a Numpy-based representation as_raw_ls
(kernel)as_raw_np
()Directly return this kernel as a numpy array. as_raw_sg
(kernel)Converts directly to a Shogun kernel as_sg
(kernel)Converts this kernel to a Shogun-based representation cleanup
()Wipe out internal representation compute
(ds1[, ds2])Generic computation of any kernel computed
(\*args, \*\*kwargs)Compute kernel and return self gradient
(data1, data2)Compute gradient of the kernel matrix. reset
()set_hyperparameters
(hyperparameter)Set hyperaparmeters from a vector. -
gradient
(data1, data2)¶ Compute gradient of the kernel matrix. A must for fast model selection with high-dimensional data.
-
set_hyperparameters
(hyperparameter)¶ Set hyperaparmeters from a vector.
Used by model selection. Note: ‘alpha’ is not considered as an hyperparameter.
-