mvpa2.featsel.rfe.ClassifierError¶
-
class
mvpa2.featsel.rfe.
ClassifierError
(clf, labels=None, train=True, **kwargs)¶ Compute (or return) some error of a (trained) classifier on a dataset.
Notes
Available conditional attributes:
confusion
: Nonetraining_stats
: Proxy training_stats from underlying classifier.
(Conditional attributes enabled by default suffixed with
+
)Attributes
clf
descr
Description of the object if any labels
Methods
__call__
(testdataset[, trainingdataset])Compute the transfer error for a certain test dataset. reset
()untrain
()Untrain the *Error
which relies on the classifierInitialization.
Parameters: clf : Classifier
Either trained or untrained classifier
labels : list
if provided, should be a set of labels to add on top of the ones present in testdata
train : bool
unless train=False, classifier gets trained if trainingdata provided to __call__
descr : str
Description of the instance
enable_ca : None or list of str
Names of the conditional attributes which should be enabled in addition to the default ones
disable_ca : None or list of str
Names of the conditional attributes which should be disabled
Attributes
clf
descr
Description of the object if any labels
Methods
__call__
(testdataset[, trainingdataset])Compute the transfer error for a certain test dataset. reset
()untrain
()Untrain the *Error
which relies on the classifier-
clf
¶
-
confusion
= None¶ TODO Think that labels might be also symbolic thus can’t directly be indicies of the array
-
labels
¶
-
untrain
()¶ Untrain the
*Error
which relies on the classifier