mvpa2.datasets.miscfx.SequenceStats¶
-
class
mvpa2.datasets.miscfx.SequenceStats(seq, order=2)¶ Simple helper to provide representation of sequence statistics
Matlab analog: https://cfn.upenn.edu/aguirre/wiki/public:m_sequences_code:mtest.m
WARNING: Experimental – API might change without warning! Current implementation is ugly!
Methods
clear(() -> None. Remove all items from D.)copy(() -> a shallow copy of D)fromkeys(...)v defaults to None. get((k[,d]) -> D[k] if k in D, ...)has_key((k) -> True if D has a key k, else False)items(() -> list of D’s (key, value) pairs, ...)iteritems(() -> an iterator over the (key, ...)iterkeys(() -> an iterator over the keys of D)itervalues(...)keys(() -> list of D’s keys)plot()Plot correlation coefficients pop((k[,d]) -> v, ...)If key is not found, d is returned if given, otherwise KeyError is raised popitem(() -> (k, v), ...)2-tuple; but raise KeyError if D is empty. setdefault((k[,d]) -> D.get(k,d), ...)update(([E, ...)If E present and has a .keys() method, does: for k in E: D[k] = E[k] values(() -> list of D’s values)viewitems(...)viewkeys(...)viewvalues(...)Initialize SequenceStats
Parameters: seq : list or ndarray
Actual sequence of targets
order : int
Maximal order of counter-balancing check. For perfect counterbalancing all matrices should be identical
Methods
clear(() -> None. Remove all items from D.)copy(() -> a shallow copy of D)fromkeys(...)v defaults to None. get((k[,d]) -> D[k] if k in D, ...)has_key((k) -> True if D has a key k, else False)items(() -> list of D’s (key, value) pairs, ...)iteritems(() -> an iterator over the (key, ...)iterkeys(() -> an iterator over the keys of D)itervalues(...)keys(() -> list of D’s keys)plot()Plot correlation coefficients pop((k[,d]) -> v, ...)If key is not found, d is returned if given, otherwise KeyError is raised popitem(() -> (k, v), ...)2-tuple; but raise KeyError if D is empty. setdefault((k[,d]) -> D.get(k,d), ...)update(([E, ...)If E present and has a .keys() method, does: for k in E: D[k] = E[k] values(() -> list of D’s values)viewitems(...)viewkeys(...)viewvalues(...)-
plot()¶ Plot correlation coefficients
-



