mvpa2.clfs.transerrorΒΆ
Utility class to compute the transfer error of classifiers.
 
Functions
| Doi(\*args, \*\*kwargs) | Perform no good and no bad | 
| auc_error(predicted, target) | Computes the area under the ROC for the given the target and predicted to make the prediction. | 
| auto_null_dist(dist) | Cheater for human beings – wraps distif needed with some | 
| ceil(x) | Return the ceiling of x as a float. | 
| chisquare(obs[, exp]) | Compute the chisquare value of a contingency table with arbitrary dimensions. | 
| corr_error(predicted, target) | Computes the correlation between the target and the predicted values. | 
| corr_error_prob(predicted, target) | Computes p-value of correlation between the target and the predicted values. | 
| enhanced_doc_string(item, \*args, \*\*kwargs) | Generate enhanced doc strings for various items. | 
| friedmanchisquare(\*args) | Computes the Friedman test for repeated measurements | 
| linregress(x[, y]) | Calculate a linear least-squares regression for two sets of measurements. | 
| log10(x) | Return the base 10 logarithm of x. | 
| mean_mismatch_error(predicted, target) | Computes the percentage of mismatches between some target and some predicted values. | 
| mean_power_fx(data) | Returns mean power | 
| nanmean(a[, axis, dtype, out, keepdims]) | Compute the arithmetic mean along the specified axis, ignoring NaNs. | 
| relative_rms_error(predicted, target) | Ratio between RMSE and root mean power of target output. | 
| rms_error(predicted, target) | Computes the root mean squared error of some target and some predicted values. | 
| root_mean_power_fx(data) | Returns root mean power | 
| table2string(table[, out]) | Given list of lists figure out their common widths and print to out | 
Classes
| BayesConfusionHypothesis([alpha, ...]) | Bayesian hypothesis testing on confusion matrices. | 
| ClassWithCollections([descr]) | Base class for objects which contain any known collection | 
| ClassifierError(clf[, labels, train]) | Compute (or return) some error of a (trained) classifier on a dataset. | 
| Collectable([value, name, doc]) | Collection element. | 
| ConditionalAttribute([enabled]) | Simple container intended to conditionally store the value | 
| Confusion([attr, labels, add_confusion_obj]) | Compute a confusion matrix from predictions and targets (Node interface) | 
| ConfusionBasedError(clf[, labels, ...]) | For a given classifier report an error based on internally computed error measure (given by some ConfusionMatrixstored in some conditional attribute ofClassifier). | 
| ConfusionMatrix([labels, labels_map]) | Class to contain information and display confusion matrix. | 
| ConfusionMatrixError([labels]) | Compute confusion matrix as an “error function” | 
| Dataset(samples[, sa, fa, a]) | Generic storage class for datasets with multiple attributes. | 
| Node([space, pass_attr, postproc]) | Common processing object. | 
| ROCCurve(labels[, sets]) | Generic class for ROC curve computation and plotting | 
| RegressionStatistics(\*\*kwargs) | Class to contain information and display on regression results. | 
| StringIO([buf]) | class StringIO([buffer]) | 
| SummaryStatistics([targets, predictions, ...]) | Basic class to collect targets/predictions and report summary statistics | 
Exceptions
| BayesConfusionHypothesis([alpha, ...]) | Bayesian hypothesis testing on confusion matrices. | 
| ClassWithCollections([descr]) | Base class for objects which contain any known collection | 
| ClassifierError(clf[, labels, train]) | Compute (or return) some error of a (trained) classifier on a dataset. | 
| Collectable([value, name, doc]) | Collection element. | 
| ConditionalAttribute([enabled]) | Simple container intended to conditionally store the value | 
| Confusion([attr, labels, add_confusion_obj]) | Compute a confusion matrix from predictions and targets (Node interface) | 
| ConfusionBasedError(clf[, labels, ...]) | For a given classifier report an error based on internally computed error measure (given by some ConfusionMatrixstored in some conditional attribute ofClassifier). | 
| ConfusionMatrix([labels, labels_map]) | Class to contain information and display confusion matrix. | 
| ConfusionMatrixError([labels]) | Compute confusion matrix as an “error function” | 
| Dataset(samples[, sa, fa, a]) | Generic storage class for datasets with multiple attributes. | 
| Node([space, pass_attr, postproc]) | Common processing object. | 
| ROCCurve(labels[, sets]) | Generic class for ROC curve computation and plotting | 
| RegressionStatistics(\*\*kwargs) | Class to contain information and display on regression results. | 
| StringIO([buf]) | class StringIO([buffer]) | 
| SummaryStatistics([targets, predictions, ...]) | Basic class to collect targets/predictions and report summary statistics | 

 
  

