mvpa2.atlases.warehouse.norm¶
-
mvpa2.atlases.warehouse.
norm
(x, ord=None, axis=None, keepdims=False)¶ Matrix or vector norm.
This function is able to return one of eight different matrix norms, or one of an infinite number of vector norms (described below), depending on the value of the
ord
parameter.Parameters: x : array_like
Input array. If
axis
is None,x
must be 1-D or 2-D.ord : {non-zero int, inf, -inf, ‘fro’, ‘nuc’}, optional
Order of the norm (see table under
Notes
). inf means numpy’sinf
object.axis : {int, 2-tuple of ints, None}, optional
If
axis
is an integer, it specifies the axis ofx
along which to compute the vector norms. Ifaxis
is a 2-tuple, it specifies the axes that hold 2-D matrices, and the matrix norms of these matrices are computed. Ifaxis
is None then either a vector norm (whenx
is 1-D) or a matrix norm (whenx
is 2-D) is returned.keepdims : bool, optional
If this is set to True, the axes which are normed over are left in the result as dimensions with size one. With this option the result will broadcast correctly against the original
x
.New in version 1.10.0.
Returns: n : float or ndarray
Norm of the matrix or vector(s).
Notes
For values of
ord <= 0
, the result is, strictly speaking, not a mathematical ‘norm’, but it may still be useful for various numerical purposes.The following norms can be calculated:
ord norm for matrices norm for vectors None Frobenius norm 2-norm ‘fro’ Frobenius norm – ‘nuc’ nuclear norm – inf max(sum(abs(x), axis=1)) max(abs(x)) -inf min(sum(abs(x), axis=1)) min(abs(x)) 0 – sum(x != 0) 1 max(sum(abs(x), axis=0)) as below -1 min(sum(abs(x), axis=0)) as below 2 2-norm (largest sing. value) as below -2 smallest singular value as below other – sum(abs(x)**ord)**(1./ord) The Frobenius norm is given by [R8]:
||A||_F = [\sum_{i,j} abs(a_{i,j})^2]^{1/2}The nuclear norm is the sum of the singular values.
References
[R8] (1, 2) G. H. Golub and C. F. Van Loan, Matrix Computations, Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15 Examples
>>> from numpy import linalg as LA >>> a = np.arange(9) - 4 >>> a array([-4, -3, -2, -1, 0, 1, 2, 3, 4]) >>> b = a.reshape((3, 3)) >>> b array([[-4, -3, -2], [-1, 0, 1], [ 2, 3, 4]])
>>> LA.norm(a) 7.745966692414834 >>> LA.norm(b) 7.745966692414834 >>> LA.norm(b, 'fro') 7.745966692414834 >>> LA.norm(a, np.inf) 4.0 >>> LA.norm(b, np.inf) 9.0 >>> LA.norm(a, -np.inf) 0.0 >>> LA.norm(b, -np.inf) 2.0
>>> LA.norm(a, 1) 20.0 >>> LA.norm(b, 1) 7.0 >>> LA.norm(a, -1) -4.6566128774142013e-010 >>> LA.norm(b, -1) 6.0 >>> LA.norm(a, 2) 7.745966692414834 >>> LA.norm(b, 2) 7.3484692283495345
>>> LA.norm(a, -2) nan >>> LA.norm(b, -2) 1.8570331885190563e-016 >>> LA.norm(a, 3) 5.8480354764257312 >>> LA.norm(a, -3) nan
Using the
axis
argument to compute vector norms:>>> c = np.array([[ 1, 2, 3], ... [-1, 1, 4]]) >>> LA.norm(c, axis=0) array([ 1.41421356, 2.23606798, 5. ]) >>> LA.norm(c, axis=1) array([ 3.74165739, 4.24264069]) >>> LA.norm(c, ord=1, axis=1) array([ 6., 6.])
Using the
axis
argument to compute matrix norms:>>> m = np.arange(8).reshape(2,2,2) >>> LA.norm(m, axis=(1,2)) array([ 3.74165739, 11.22497216]) >>> LA.norm(m[0, :, :]), LA.norm(m[1, :, :]) (3.7416573867739413, 11.224972160321824)