mvpa2.algorithms.group_clusterthr.dok_matrix

Inheritance diagram of dok_matrix
class mvpa2.algorithms.group_clusterthr.dok_matrix(arg1, shape=None, dtype=None, copy=False)

Dictionary Of Keys based sparse matrix.

This is an efficient structure for constructing sparse matrices incrementally.

This can be instantiated in several ways:
dok_matrix(D)
with a dense matrix, D
dok_matrix(S)
with a sparse matrix, S
dok_matrix((M,N), [dtype])
create the matrix with initial shape (M,N) dtype is optional, defaulting to dtype=’d’

Notes

Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.

Allows for efficient O(1) access of individual elements. Duplicates are not allowed. Can be efficiently converted to a coo_matrix once constructed.

Examples

>>> import numpy as np
>>> from scipy.sparse import dok_matrix
>>> S = dok_matrix((5, 5), dtype=np.float32)
>>> for i in range(5):
...     for j in range(5):
...         S[i, j] = i + j    # Update element

Attributes

nnz Number of stored values, including explicit zeros.
dtype (dtype) Data type of the matrix
shape (2-tuple) Shape of the matrix
ndim (int) Number of dimensions (this is always 2)

Methods

asformat(format) Return this matrix in a given sparse format
asfptype() Upcast matrix to a floating point format (if necessary)
astype(t)
clear(() -> None.  Remove all items from D.)
conj()
conjtransp() Return the conjugate transpose
conjugate()
copy() Returns a copy of this matrix.
count_nonzero() Number of non-zero entries, equivalent to
diagonal() Returns the main diagonal of the matrix
dot(other) Ordinary dot product
fromkeys(...) v defaults to None.
get(key[, default]) This overrides the dict.get method, providing type checking but otherwise equivalent functionality.
getH()
get_shape()
getcol(j) Returns a copy of column j of the matrix as a (m x 1) DOK matrix.
getformat()
getmaxprint()
getnnz([axis]) Number of stored values, including explicit zeros.
getrow(i) Returns a copy of row i of the matrix as a (1 x n) DOK matrix.
has_key((k) -> True if D has a key k, else False)
items(() -> list of D’s (key, value) pairs, ...)
iteritems(() -> an iterator over the (key, ...)
iterkeys(() -> an iterator over the keys of D)
itervalues(...)
keys(() -> list of D’s keys)
maximum(other)
mean([axis, dtype, out]) Compute the arithmetic mean along the specified axis.
minimum(other)
multiply(other) Point-wise multiplication by another matrix
nonzero() nonzero indices
pop((k[,d]) -> v, ...) If key is not found, d is returned if given, otherwise KeyError is raised
popitem(() -> (k, v), ...) 2-tuple; but raise KeyError if D is empty.
power(n[, dtype])
reshape(shape[, order]) Gives a new shape to a sparse matrix without changing its data.
resize(shape) Resize the matrix in-place to dimensions given by ‘shape’.
set_shape(shape)
setdefault((k[,d]) -> D.get(k,d), ...)
setdiag(values[, k]) Set diagonal or off-diagonal elements of the array.
sum([axis, dtype, out]) Sum the matrix elements over a given axis.
toarray([order, out]) Return a dense ndarray representation of this matrix.
tobsr([blocksize, copy]) Convert this matrix to Block Sparse Row format.
tocoo([copy]) Convert this matrix to COOrdinate format.
tocsc([copy]) Convert this matrix to Compressed Sparse Column format.
tocsr([copy]) Convert this matrix to Compressed Sparse Row format.
todense([order, out]) Return a dense matrix representation of this matrix.
todia([copy]) Convert this matrix to sparse DIAgonal format.
todok([copy]) Convert this matrix to Dictionary Of Keys format.
tolil([copy]) Convert this matrix to LInked List format.
transpose([axes, copy]) Reverses the dimensions of the sparse matrix.
update(([E, ...) If E present and has a .keys() method, does: for k in E: D[k] = E[k]
values(() -> list of D’s values)
viewitems(...)
viewkeys(...)
viewvalues(...)
conjtransp()

Return the conjugate transpose

copy()

Returns a copy of this matrix.

No data/indices will be shared between the returned value and current matrix.

count_nonzero()

Number of non-zero entries, equivalent to

np.count_nonzero(a.toarray())

Unlike getnnz() and the nnz property, which return the number of stored entries (the length of the data attribute), this method counts the actual number of non-zero entries in data.

format = 'dok'
get(key, default=0.0)

This overrides the dict.get method, providing type checking but otherwise equivalent functionality.

getcol(j)

Returns a copy of column j of the matrix as a (m x 1) DOK matrix.

getnnz(axis=None)

Number of stored values, including explicit zeros.

Parameters:

axis : None, 0, or 1

Select between the number of values across the whole matrix, in each column, or in each row.

See also

count_nonzero
Number of non-zero entries
getrow(i)

Returns a copy of row i of the matrix as a (1 x n) DOK matrix.

resize(shape)

Resize the matrix in-place to dimensions given by ‘shape’.

Any non-zero elements that lie outside the new shape are removed.

tocoo(copy=False)

Convert this matrix to COOrdinate format.

With copy=False, the data/indices may be shared between this matrix and the resultant coo_matrix.

tocsc(copy=False)

Convert this matrix to Compressed Sparse Column format.

With copy=False, the data/indices may be shared between this matrix and the resultant csc_matrix.

todok(copy=False)

Convert this matrix to Dictionary Of Keys format.

With copy=False, the data/indices may be shared between this matrix and the resultant dok_matrix.

transpose(axes=None, copy=False)

Reverses the dimensions of the sparse matrix.

Parameters:

axes : None, optional

This argument is in the signature solely for NumPy compatibility reasons. Do not pass in anything except for the default value.

copy : bool, optional

Indicates whether or not attributes of self should be copied whenever possible. The degree to which attributes are copied varies depending on the type of sparse matrix being used.

Returns:

p : self with the dimensions reversed.

See also

np.matrix.transpose
NumPy’s implementation of ‘transpose’ for matrices